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Let’s start with matrix multiplication

Suppose we want to compute

A · B = C

where A and B are n × n matrices

j

n


=


A	

 B	

 C	



i i 

j

n∑
k=1

aikbkj = cij
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Two algorithms for matrix multiplication. . .

We can multiply matrices like this (“matrix-vector” algorithm):

=


A	

 B	

 C	



or like this (“blocked” algorithm):

=


A	

 B	

 C	



In both cases, we do 2n3 + O(n2) flops
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Same computation, different performance
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We must consider communication

By communication, I mean
moving data within memory hierarchy on a sequential computer
moving data between processors on a parallel computer

For high-level analysis, we’ll use these simple memory models:
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Runtime model

Measure computation in terms
of # flops performed

Time per flop: γ

Measure communication in terms
of # words communicated

Time per word: β

Total running time of an algorithm (ignoring overlap):

γ · (# flops) + β · (# words)

β � γ as measured in time and energy, and the relative cost of
communication is increasing
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Why avoid communication

Annual Improvements in Time
Flop rate DRAM Bandwidth Network Bandwidth

γ β β

59% per year 23% per year 26% per year

Energy cost comparisons
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Costs of matrix multiplication algorithms

Let M be the size of the fast memory

The blocked algorithm uses a block size of
√

M/3

Computation Communication
(# flops) (# words)

Mat-Vec Algorithm O(n3) O(n3)

Blocked Algorithm O(n3) O
(

n3
√

M

)

Can we do better than the blocked algorithm?

No . . . and Yes
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Summary

some communication is necessary: we can prove lower bounds
for Strassen’s matrix multiplication*
for “classical” dense linear algebra

theoretical analysis identifies sub-optimal algorithms and spurs
algorithmic innovation

parallel implementation of Strassen’s matrix multiplication*
solving symmetric indefinite linear system*
computing eigenvalues of a symmetric band matrix
computing a tall-skinny SVD
LU and QR factorizations
nonsymmetric eigendecompositions

minimizing communication leads to speedups in practice
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Theory to practice

Theoretical Lower Bounds 

Algorithmic Innovation 

Optimized Implementation 

Improved Applications 
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Lower bounds for classical matrix multiplication

Assume O(n3) algorithm
Sequential case with fast memory of size M

lower bound on words moved between fast/slow mem:

Ω

(
n3
√

M

)
[Hong & Kung 81]

attained by blocked algorithm
Parallel case with P processors (local memory of size M)

lower bound on words communicated (along critical path):

Ω

(
n3

P
√

M

)
[Toledo et al. 04]

also attainable
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Let’s ask again:

Can we do better than the blocked algorithm?

Given the computation involved, it minimized communication. . .

. . . but what if we change the computation?

It’s possible to reduce both computation and communication
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Strassen’s algorithm for matrix multiplication
Strassen showed how to use 7 multiplies instead of 8 for 2× 2 multiplication[

C11 C12
C21 C22

]
=

[
A11 A12
A21 A22

] [
B11 B12
B21 B22

]
Classical Algorithm

M1 = A11 · B11

M2 = A12 · B21

M3 = A11 · B12

M4 = A12 · B22

M5 = A21 · B11

M6 = A22 · B21

M7 = A21 · B12

M8 = A22 · B22

C11 = M1 + M2

C12 = M3 + M4

C21 = M5 + M6

C22 = M7 + M8

Strassen’s Algorithm

M1 = (A11 + A22) · (B11 + B22)

M2 = (A21 + A22) · B11

M3 = A11 · (B12 − B22)

M4 = A22 · (B21 − B11)

M5 = (A11 + A12) · B22

M6 = (A21 − A11) · (B11 + B12)

M7 = (A12 − A22) · (B21 + B22)

C11 = M1 + M4 −M5 + M7

C12 = M3 + M5

C21 = M2 + M4

C22 = M1 −M2 + M3 + M6
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Strassen’s algorithm for matrix multiplication
Strassen showed how to use 7 multiplies instead of 8 for 2× 2 multiplication

Flop count recurrence:

F (n) = 7 · F (n/2) + Θ(n2)

F (n) = Θ
(
nlog2 7)

log2 7 ≈ 2.81
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Sequential communication costs

If you implement Strassen’s algorithm recursively
on a sequential computer:

Computation Communication
# flops # words

Classical
O(n3) O

((
n√
M

)3
M
)

(blocked)

Strassen O(nlog2 7) O
((

n√
M

)log2 7
M
)

Can we reduce Strassen’s communication cost further?

Grey Ballard 13
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Lower bounds for Strassen’s algorithm

Theorem (Ballard, Demmel, Holtz, Schwartz 12)
On a sequential machine, Strassen’s algorithm must communicate

# words = Ω

((
n√
M

)log2 7

M

)

and on a parallel machine, it must communicate

# words = Ω

((
n√
M

)log2 7 M
P

)

This work

received the SPAA Best Paper Award [BDHS11]

appeared in the Journal of the ACM [BDHS12a]

and has been invited to appear as a Research Highlight in the
Communications of the ACM
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Computation graph analysis

Input / Output 
Intermediate value 
Dependency 

RS 

WS 

S V 

We connected graph expansion to communication
expansion describes the relationship between a subset and its
neighbors in the complement
larger expansion implies more communication necessary
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Strassen’s computation graph

` 
  

7 5 4 1 3 2 6 

11 12 21 22 

11 12 21 22 11 12 21 22 

Enc A 

Dec C 

Enc B 

M1 = (A11 + A22) · (B11 + B22)

M2 = (A21 + A22) · B11

M3 = A11 · (B12 − B22)

M4 = A22 · (B21 − B11)

M5 = (A11 + A12) · B22

M6 = (A21 − A11) · (B11 + B12)

M7 = (A12 − A22) · (B21 + B22)

C11 = M1 + M4 − M5 + M7

C12 = M3 + M5

C21 = M2 + M4

C22 = M1 − M2 + M3 + M6
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Optimal Parallel Algorithm?

This lower bound proves that the sequential recursive algorithm is
communication-optimal

What about the parallel case?

Earlier attempts to parallelize Strassen had communication costs
which exceeded the lower bound
We developed a new algorithm that is communication-optimal,
called Communication-Avoiding Parallel Strassen (CAPS)
[BDH+12b]

Grey Ballard 17
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Main idea of CAPS algorithm

At each level of recursion tree, choose either breadth-first or depth-first
traversal of the recursion tree

Breadth-First-Search (BFS) Depth-First-Search (DFS)

Runs all 7 multiplies in parallel
each uses P/7 processors

Requires 7/4 as much extra memory

Requires communication, but
minimizes communication in subtrees

Runs all 7 multiplies sequentially
each uses all P processors

Requires 1/4 as much extra memory

Increases communication by factor of
7/4 in subtrees

Grey Ballard 18



Is it optimal?

After algorithmic analysis, we can compare communication costs to
the lower bound:

Communication
# words

CAPS O
(

max
{(

n√
M

)log2 7
M
P ,

n2

P2/ log2 7

})
Lower Bound

Ω

((
n√
M

)log2 7
M
P

)
[BDHS11]

New Lower Bound
[BDH+12a]
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Performance of CAPS on a large problem

Strong-scaling on a Cray XT4, n = 94,080
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Can we beat Strassen?

Strassen’s algorithm allows for less computation and communication
than the classical O(n3) algorithm

We have algorithms that attain its communication lower bounds and
perform well on highly parallel machines

Can we do any better?

Yes, but there are other complications

Let’s go back to classical matrix algorithms

Grey Ballard 21
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Lower bounds for classical matrix multiplication

Assume O(n3) algorithm
Sequential case with fast memory of size M

lower bound on words moved between fast/slow mem:

Ω

(
n3
√

M

)
[Hong & Kung 81]

attained by blocked algorithm
Parallel case with P processors (local memory of size M)

lower bound on words communicated (along critical path):

Ω

(
n3

P
√

M

)
[Toledo et al. 04]

also attainable
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Extensions to the rest of linear algebra

Grey Ballard 23

Theorem (Ballard, Demmel, Holtz, Schwartz 11)
If a computation “smells” like 3 nested loops, it must communicate

# words = Ω

(
# flops√

memory size

)

This result applies to
dense or sparse problems
sequential or parallel computers

This work was recognized with the SIAM Linear Algebra Prize,
given to the best paper from the years 2009-2011Main Idea
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Theorem (Ballard, Demmel, Holtz, Schwartz 11)
If a computation “smells” like 3 nested loops, it must communicate

# words = Ω

(
# flops√

memory size

)

What smells like 3 nested loops?

the rest of BLAS 3 (e.g. matrix multiplication, triangular solve)

Cholesky, LU, LDLT , LTLT decompositions

QR decomposition

eigenvalue and SVD reductions

sequences of algorithms (e.g. repeated matrix squaring)

graph algorithms (e.g. all pairs shortest paths)

This work was recognized with the SIAM Linear Algebra Prize,
given to the best paper from the years 2009-2011Main Idea



Extensions to the rest of linear algebra

Grey Ballard 23

Theorem (Ballard, Demmel, Holtz, Schwartz 11)
If a computation “smells” like 3 nested loops, it must communicate

# words = Ω

(
# flops√

memory size

)

What if the computation smells like 5 nested loops?

. . . come see Nick’s talk next week

Main Idea



Optimal algorithms - sequential O(n3) linear algebra

Computation Optimal
Algorithm

BLAS 3 blocked algorithms
[Gustavson 97]

Cholesky
LAPACK

[Ahmed & Pingali 00]
[BDHS10]

Symmetric LAPACK (rarely)
Indefinite [BDD+12a]

LU
LAPACK (rarely)

[Toledo 97]∗

[Grigori et al. 11]

QR

LAPACK (rarely)
[Frens & Wise 03]

[Elmroth & Gustavson 98]∗

[Hoemmen et al. 12]∗

Eig, SVD [BDK12a], [BDD12b]

Grey Ballard 24
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Example: symmetric indefinite linear solve

Suppose we want to solve Ax = b where A

is symmetric (save half the storage and flops)
but indefinite (need to permute rows/cols for numerical stability)

We generally want to compute a factorization

PAPT = LTLT

P is a permutation, L is triangular, and T is symmetric and “simpler”

Grey Ballard 25



Reducing communication improves performance

Performance of symmetric indefinite linear system solvers
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New Algorithm
LAPACK

Implemented within PLASMA library [BBD+13]
This work will receive a Best Paper Award at IPDPS ’13
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Aasen’s symmetric indefinite factorization

We’re solving Ax = b where A = AT but A is indefinite

Standard approach is to compute PAPT = LDLT

L is lower triangular and D is block diagonal (1× 1 and 2× 2 blocks)
requires complicated pivoting, harder to do tournament pivoting

Aasen’s approach is to compute PAPT = LTLT [Aas71]
L is lower triangular and T is tridiagonal
pivoting is more like LU (nonsymmetric case)

= A L T LT 

= A L H = H T LT 

Grey Ballard 27



Blocked version of Aasen’s algorithm

Compute block column of H from T and L:

H T L
T

 =

Compute block column of L and subdiagonal block of H with LU:

A L H

 =

Grey Ballard 28



Converting scalar to blocked algorithm. . .

1 H1:J−1,J = T1:J−1,1:J−1LT
1:J−1,J

2 AJ,J = LJ,1:J−1H1:J−1,J + LJ,JHJ,J

3 HJ,J = TJ,J−1LT
J−1,J + TJ,JLT

J,J

4 AJ+1:N,J = LJ+1:N,1:JH1:J,J + LJ+1:N,J+1HJ+1,J

5 HJ+1,J = TJ+1,JLT
J,J

Grey Ballard 29



Computing symmetric blocks of T

Since diagonal blocks of T are symmetric, need to be computed from a
symmetric equation, which includes two-sided triangular solve:

A L W

 =

WT LT

 +

L LTT

=+

W ∼ H

Grey Ballard 30



Other complications

How to do tall-skinny LU decomposition?
use tournament pivoting
use recursive algorithm
use LAPACK algorithm

Need to take care in applying symmetric permutations

We still need to decompose band matrix T :
non-symmetric band LU decomposition
successive band reduction (orthogonal similarity transformations)
Kaufman’s symmetric retraction algorithm

Grey Ballard 31



Comm-optimal symmetric indefinite factorization

After handling all the complications, we obtain a blocked version of
Aasen’s algorithm which moves

O
(

n3
√

M

)
words

and matches the communication lower bound

A shared-memory implementation in the PLASMA library
outperforms the best implementation of the standard algorithm

Grey Ballard 32



Summary

some communication is necessary: we can prove lower bounds
for Strassen’s matrix multiplication*
for “classical” dense linear algebra

theoretical analysis identifies sub-optimal algorithms and spurs
algorithmic innovation

parallel implementation of Strassen’s matrix multiplication*
solving symmetric indefinite linear system*
computing eigenvalues of a symmetric band matrix
computing a tall-skinny SVD
LU and QR factorizations
nonsymmetric eigendecompositions

minimizing communication leads to speedups in practice

Grey Ballard 33



Collaborators

Michael Anderson (UC Berkeley)

Aydin Buluc (LBNL)

James Demmel (UC Berkeley)

Alex Druinsky (Tel-Aviv U)

Ioana Dumitriu (U Washington)

Andrew Gearhart (UC Berkeley)

Laura Grigori (INRIA)

Olga Holtz (UC Berkeley/TU Berlin)

Mathias Jacquelin (INRIA)

Nicholas Knight (UC Berkeley)

Kurt Keutzer (UC Berkeley)

Tamara Kolda (Sandia NL)

Benjamin Lipshitz (UC Berkeley)

Inon Peled (Tel-Aviv U)

Todd Plantenga (Sandia NL)

Oded Schwartz (UC Berkeley)

Edgar Solomonik (UC Berkeley)

Sivan Toledo (Tel-Aviv U)

Ichitaro Yamazaki (UT Knoxville)

Grey Ballard 34



Avoiding Communication in
Dense Linear Algebra

Grey Ballard
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Other Ongoing and Future Projects

implementing these algorithms in communication-bound settings
e.g., SVD of a tall-skinny matrix on a Hadoop cluster

extending these algorithmic ideas to sparse matrices
e.g., sparse matrix-matrix multiplication

using Strassen to do the rest of linear algebra in parallel

trading off local memory and communication in parallel QR
decomposition

Grey Ballard 36



Main Idea of Lower Bound Proof

Crux of proof based on geometric inequality [Loomis & Whitney 49]
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Volume of box

V = xyz =
√

xz · yz · xy

�A shadow� 

�B
 shadow�

 

�C shadow� 

A B 
C 

V

Volume of a 3D set

V ≤
√

area(A shadow) ·√
area(B shadow) ·√
area(C shadow)

Given limited set of data, how much useful computation can be done?
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Can an n × n linear system of equations Ax = b be solved in O(n2+ε)
operations, where ε is arbitrarily small?

. . . if solved affirmatively, [this] would change the world.

It is an article of faith for some of us that if O(n2+ε) is ever achieved, the
big idea that achieves it will correspond to an algorithm that is really
practical.

-Nick Trefethen, 2012 SIAM President

Grey Ballard 38



How much computation will that save?
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Can we beat Strassen?

Exponent of matrix multiplication
over time

1960 1970 1980 1990 2000 2010
2

2.2

2.4

2.6

2.8

3 classical

Strassen

Schonhage

Coppersmith−Winograd Williams

Strassen

Bini et al.

Unfortunately, these improvements
are only theoretical because they

involve approximations
are existence proofs
have (possibly) large
constants
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Solving the base case. . .

2× 2× 2 [
a11 a12
a21 a22

] [
b11 b12
b21 b22

]
=

[
c11 c12
c21 c22

]

multiplies 6 7 8

flop count O
(
n2.58) O

(
n2.81) O

(
n3)

3× 3× 3 a11 a12 a13

a21 a22 a23

a31 a32 a33

b11 b12 b13

b21 b22 b23

b31 b32 b33

 =

c11 c12 c13

c21 c22 c23

c31 c32 c33



multiplies 19 21 23 27

flop count O
(
n2.68) O

(
n2.77) O

(
n2.85) O

(
n3)
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Beating Strassen

Finding a better base case corresponds to computing a low-rank
decomposition of a particular 3D tensor

= + … +  

Unfortunately, this is a nonlinear integer optimization problem
it’s NP-complete (in general), but need to solve it only once
I used this method to re-discover Strassen

Could use (numerical) low-rank tensor approximation algorithms
very efficient, but no guarantees

Grey Ballard 42
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If we find it, we can make it practical!
same parallelization as Strassen, but with
less computation and communication



Memory-Independent Lower Bounds

Classical Strassen
Memory-dependent

Ω
(

n3

P
√

M

)
Ω
(

nω

PMω/2−1

)
lower bound

Memory-independent
Ω
(

n2

P2/3

)
Ω
(

n2

P2/ω

)
lower bound

Perfect strong
P = O

(
n3

M3/2

)
P = O

(
nω

Mω/2

)
scaling range

Attaining algorithm [SD11] [BDH+12b]
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Example: Compute Eigenvalues of Band Matrix

Suppose we want to solve Ax = λx where A

is symmetric (save half the storage and flops)
has band structure (exploit sparsity – ignore zeros)

We generally want to compute a factorization

A = QTQT

Q is an orthogonal matrix and T is symmetric tridiagonal
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Successive Band Reduction (bulge-chasing)

constraint:
c + d ≤ b

5 

Q1 

4 

3 

2 

1 
6 

Q1
T

 

b+
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d+
1 

c

c+
d 

c    d 

Q2 

Q2
T

 

Q3 

Q3
T

 

Q4 

Q4
T

 

Q5 

Q5
T

 

b = bandwidth
c = columns
d = diagonals
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CASBR Data Access Pattern

One bulge at a time Four bulges at a time
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Implementation of Band Eigensolver (CASBR)

Speedup of sequential CASBR over Intel’s Math Kernel Library
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Implementation of Band Eigensolver (CASBR)

Speedup of parallel CASBR (10 threads) over PLASMA library
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Example Application: Video Background Subtraction

Idea: use Robust PCA algorithm [CLMW09] to subtract constant
background from the action of a surveillance video

Given a matrix M whose columns represent frames, compute

M = L + S

where L is low-rank and S is sparse
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Example Application: Video Background Subtraction

Q 

U Σ VT * **
R"

Threshold these singular values 

Compute:

M = L + S

where L is low-rank and S is sparse

The algorithm works iteratively, each
iteration requires a singular value
decomposition (SVD)

M is 110,000×100

Communication-avoiding algorithm
provided 3× speedup over best GPU
implementation [ABDK11]
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Overview of Divide & Conquer Algorithm for
Nonsymmetric Eigenproblem

One step of divide and conquer:

1 Compute
(

I + (A−1)2k
)−1

implicitly

maps eigenvalues of A to 0 and 1 (roughly)
2 Compute rank-revealing decomposition to find invariant subspace
3 Output block-triangular matrix

Anew = U∗AU =

[
A11 A12
ε A22

]

block sizes chosen to minimize norm of ε
eigenvalues of A11 all lie outside unit circle, eigenvalues of A22 lie
inside unit circle, subproblems solved recursively
stable, but progress guaranteed only with high probability
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Reduction Example: LU

It’s easy to reduce matrix multiplication to LU:

T ≡

 I 0 −B
A I 0
0 0 I

 =

 I
A I
0 0 I

I 0 −B
I A · B

I

 ≡ L · U

LU factorization can be used to perform matrix multiplication
Communication lower bound for matrix multiplication applies to LU

Reduction to Cholesky is a little trickier, but same idea [BDHS10]
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Algorithms - Parallel O(n3) Linear Algebra

Algorithm Reference
Factor exceeding Factor exceeding
lower bound for lower bound for

# words # messages
Matrix Multiply [Can69] 1 1

Cholesky ScaLAPACK log P log P
Symmetric [BDD+12a] proposed work proposed work
Indefinite ScaLAPACK log P (N/P1/2) log P

LU [GDX11] log P log P
ScaLAPACK log P (N/P1/2) log P

QR [DGHL12] log P log3 P
ScaLAPACK log P (N/P1/2) log P

SymEig, SVD [BDK12a] proposed work proposed work
ScaLAPACK log P N/P1/2

NonsymEig [BDD12b] log P log3 P
ScaLAPACK P1/2 log P N log P

*This table assumes that one copy of the data is distributed evenly across processors

Red = not optimal Local 

Local Local 

Local 

Local Local Local 

Local 

Local 
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Symmetric Eigenproblem and SVD via SBR

We’re solving the symmetric eigenproblem via reduction to tridiagonal form

Conventional approach (e.g. LAPACK) is direct tridiagonalization

Two-phase approach reduces first to band, then band to tridiagonal

Direct:

1 2 1 2 

A T 
Two-step:

1 2 1 2 1 2 

A B T 

first phase can be done efficiently

second phase is trickier, requires
successive band reduction (SBR)
[BLS00]

involves “bulge-chasing”
we’ve improved it to reduce
communication [BDK12b]
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Communication-Avoiding SBR - theory

Flops Words Moved Data Re-use
Schwarz 4n2b O(n2b) O(1)

M-H 6n2b O(n2b) O(1)

B-L-S* 5n2b O(n2 log b) O
(

b
log b

)
CA-SBR† 5n2b O

(
n2b2

M

)
O
(M

b

)
*with optimal parameter choices

†assuming 1 ≤ b ≤
√

M/3
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Performance of CAPS on large problems

Strong-scaling on Intrepid (IBM BG/P), n = 65,856.
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Performance of CAPS on large problems

Strong-scaling on Intrepid (IBM BG/P), n = 65,856.
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Performance: Model vs Actual
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